Skip navigation

Renault V6– Paris Air Show at Le Bourget: Renault presents its innovative new power unit designed to the new technical regulations to be used in the FIA Formula One World Championship from 2014 onwards.
– The new generation Power Unit is officially named Energy F1-2014 reflecting synergies with the pioneering fuel efficient Energy engine range used in Renault road cars.
– The race-intent Power Unit revealed for the first time demonstrates a radical leap in Formula One powertrain technology, achieving groundbreaking fuel efficiency from its direct injection turbocharged engine allied to cutting edge energy recovery systems and electrification.

In 2014, Formula 1 will enter a new era. After three years of planning and development, the most significant technical change to hit the sport in more than two decades is introduced. Engine regulations form the major part of the coming revolution, with the introduction of a new generation of Power Units that combine a 1.6-litre V6 turbocharged engine with energy recovery systems that will dramatically increase efficiency by harvesting energy dissipated as heat in the exhaust or brakes.

The maximum power of the new Power Unit will exceed the output of current V8 F1 engines, however, fuel efficiency will be radically improved. With only 100kg permitted for the race, the new units will use 35% less fuel than their predecessors.

“From 2014 we will bring engines to the fore and redress the balance in F1. An engine is the heart of a car, from next year it returns to the heart of our sport.” Alain Prost, Renault ambassador and four-times Formula 1 World Champion

For several years, Renault has used its racing know-how to develop fuel efficient engines for road cars, notably its Energy range. The objectives are clear: maintain or improve driving pleasure, vitality and acceleration with downsized engines to achieve lower fuel consumption and CO2 emissions.

Renault has employed these principles in developing the F1 Power Unit, creating a complete, and genuine, circular development process between road and track. For these reasons, Renault has named the F1 Power Unit series ‘Energy F1’; clearly illustrating that the F1 Power Unit shares the same DNA as its road-going cousins.

“From next year, one of greatest challenges in F1 will be to maximise energy efficiency and fuel economy while maintaining the power output and performance expected of F1 cars. Renault has pioneered this technology in its road car engine range with the Energy series. Naming the Power Unit Energy F1 creates an unbroken range, from the Clio through to our competition department.”

Jean-Michel Jalinier, President of Renault Sport F1

2014: What are the rules?

– 1.6L direct injection Turbo V6.
– Unique pressure charging architecture: single turbine and compressor (plus E-motor allowed).
– 5 Power Units per driver per season in 2014, reducing to 4 in subsequent years.
– Strong focus on improved vehicle fuel efficiency / reduced fuel consumption :
– Fuel quantity for the race limited to 100 kg initially (-35% from now – currently unlimited).
– Fuel mass flow rate limited to 100 kg/hr max – currently unlimited.
– Potent Energy Recovery Systems (ERS) are allowed

The Energy F1-2014: new terminology for a new era
‘‘The next generation of F1 cars will be powered by a turbocharged 1.6-litre V6 internal combustion engine of around 600 bhp, plus around 160 bhp of electrical propulsion from the energy recovery system, meaning the term ‘engine’ will no longer fully describe a car’s source of propulsive power. It is more relevant to refer to the complete system as a ‘Power Unit.’’ Rob White, Deputy Managing Director (technical)

V6 is shorthand for an internal combustion engine with its cylinders arranged in two banks of 3 cylinders arranged in a ‘V’ configuration over a common crankshaft. The Energy F1-2014 V6 has a displacement of 1.6 litres and will make around 600 bhp, or more than 3 times the power of a Clio Renaultsport.

A turbocharger uses an exhaust driven turbine to drive a compressor to increase the density of the intake air consumed by the engine and so make more power for a given displacement. The residual heat energy contained in the exhaust gases after expansion in the cylinders of the engine is converted to mechanical shaft power by the exhaust turbine. The mechanical power from the turbine is used to drive the compressor, and also the MGU-H (see below).

As the turbocharger speed must vary to match the requirement of the engine, there may be a delay in torque response, often known as turbo-lag. One of the great challenges of the new Power Unit is to reduce this to near zero to match the instant torque delivery of the current V8 engines.

A wastegate is often used in association with a turbocharger to control the system. It is a control device that allows excess exhaust gas to bypass the turbine, to match the power produced by the turbine to that needed by the compressor to supply the air required by the engine.

With direct fuel injection (DI), fuel is sprayed directly into the combustion chamber rather than into the inlet tract upstream of the inlet valves. The fuel-air mixture is formed within the cylinder, so great precision is required in metering and directing the fuel from the injector nozzle. This is a key sub-system at the heart of the fuel efficiency and power delivery of the Power Unit.

A motor generator unit (MGU) is an electrical machine. When operating as a motor, the MGU converts electrical energy to mechanical energy. When it operates as a generator the MGU converts mechanical energy to electrical. The 2014 Power Unit uses two MGUs; an MGU-H (H for Heat – exhaust energy recovery) and MGU-K (K for Kinetic – kinetic energy recovery during braking).

The MGU-K is connected to the crankshaft of the internal combustion engine and is capable of recovering or providing power (limited to 120 kW or 160 bhp by the rules). Under braking, the MGU-K operates as a generator to slow the car (reducing the heat dissipated in the brakes) and so recovers some of the kinetic energy and converts it into electricity. Under acceleration, the MGU-K is powered (from the Energy Store and/or from the MGU-H) and acts as a motor to propel the car.

The MGU-H is connected to the turbocharger. Acting as a generator, it absorbs power from the turbine shaft to recover heat energy from the exhaust gases. The electrical energy can be either directed to the MGU-K or to the battery for storage for later use. The MGU-H is also used to control the speed of the turbocharger to match the air requirement of the engine (eg to slow it down in place of a wastegate or to accelerate it to compensate for turbo-lag.)

The Power Unit’s ERS (Energy Recovery System) uses the MGU-H and MGU-K plus an Energy Store, plus some power and control electronics. Heat and Kinetic Energy recovered can be consumed immediately if required by the other MGU, or used to charge the Energy Store. The stored energy can be used to propel the car by the MGU-K or to accelerate the turbocharger by the MGU-H. Compared to 2013 KERS, the ERS of the 2014 Power Unit will have twice the power (120 kW vs 60 kW) and a performance effect 10 times greater.

Renault today released the first official sound recording of the Energy F1-2014 Power Unit.

A simulated lap of Singapore demonstrates that engine noise will remain an important ingredient of the F1 show with the new generation Power Units.

‘‘The sound of the engine is the sum of three principal components, exhaust, intake and mechanical noise. On fired engines, exhaust noise dominates, but the other two sources are not trivial and would be loud if the exhaust noise was suppressed and contribute to the perceived sound of the engines in the car.

‘‘All three sources are still present on the V6. At the outset, there is more energy in each combustion event but there are fewer cylinders turning at lower speed and both intake and exhaust noise are attenuated by the turbo. Overall, the sound pressure level (so the perceived volume) is lower and the nature of the sound reflects the new architecture. ‘‘The car will still accelerate and decelerate rapidly, with instant gearshifts. The engines remain high revving, ultra high output competition engines. Fundamentally the engine noise will still be loud. It will wake you from sleep, and circuit neighbours will still complain. The engine noise is just a turbocharged noise, rather than a normally aspirated noise: you can just hear the turbo when the driver lifts off the throttle and the engine speed drops.

‘‘I am sure some people will be nostalgic for the sound of engines from previous eras, including the preceding V8, but the sound of the new generation Power Units is just different. It’s like asking whether you like Motorhead or AC/DC. Ultimately it is a matter of personal taste. Both in concert are still pretty loud.’’


Key Dates

January 2012:
After seven months of design and build, the first cylinder of the V6 is tested on the single-cylinder dyno in Viry. This extremely accurate dyno enables micro analysis of the combustion event and fuel consumption in one cylinder, facilitating iterative design enhancements that can ultimately be scaled up to all six cylinders without unnecessary time or economic loss.

June 2012:
After six months’ testing on the single cylinder dyno, the first full V6 prototype is tested on the full dyno. Initial tests focused on achieving reliability over short distances before increasing the number of kilometres completed. The first power curve – or the complete range of operating speeds – was achieved at the end of August.

February 2013:
The MGU-H and MGU-K energy recovery systems are assembled and tested on the dynos alongside the V6 internal combustion engine. The technical regulations demand radically advanced and complex design solutions so the design and manufacture stage lasted considerably longer than the design phase for the thermal engine.

June 2013:
First race-intent Power Unit and Energy Recovery System is run on the dyno for the first time. Two years of planning and preparation are reconciled, and the complete unit – more or less in its final stages – enters the final stage of optimisation before its eventual track test.

The next steps

Early January 2014:
The Power Units will be installed into the partner teams ready for fire up and launch.

Mid January 2014:
The first 2014 chassis will hit the track.

March 2014:
First 2014 Grand Prix.

‘‘Exchanges between chassis and engine teams started at a very early time, before the regulations were fully defined,’’ explains director of programmes and customer support, Axel Plasse.

‘‘We had very general discussions regarding the principles of the regulations and how we could achieve our combined aims, or indeed whether the aims were feasible. From Renault’s point of view it was essential that the new regulations should include very aggressive fuel consumption targets to reflect growing environmental concerns and also provide a test bed for innovative solutions.

‘‘The teams were however also concerned about the sporting show: F1 cars should still be the quickest competition cars in the world. The cars should also not be too easy to drive, that is, engines should not be flat out all the time – there should be a balance between wide open, partial and off throttle that rewards driver skill. Everyone however recognised the equal validity of the ‘green’ targets and the need to retain the element of the ‘show’.

‘‘How we could marry the two when they seem mutually exclusive was one of the early challenges. At this point the chassis and engine teams began to discuss power scheduling, or how sufficient power would be supplied from the engine with the limitations imposed by the regulations.

‘‘We came up with a number of ideas to meet the required expectations. The way the turbocharger and the wastegate are used, for example, how we control the combustion events and engine mixes and the behaviour of a direct injection engine versus a port injected engine.

‘‘Once we had determined the basic principles, we moved to the design phase of the project. This was mid 2011, and stretched into the beginning of 2012. We established design reviews with our teams, scheduled every other week. The meetings started with just a handful of people, but as time went on more and more people from different departments started attending, on both sides of the Channel. It underlines the fact that the Power Unit and the brand new rules are a complete new way of working and exceedingly complex; several different departments in the engine and chassis teams were implicated, from control systems to aero to cooling. In fact at times we had twice as many people on the 2014 Power Unit as we did for the V8 reviews!

‘‘From that stage, one of the key areas we needed to investigate was the packaging of the Power Unit. The current V8 is 95kg, 100kg if you add the weight of the MGU. This increases to 120kg when you include the ancillary parts, such as the radiators and other cooling devices. With the 2014 Power Unit, the V6 turbocharged engine will be a minimum of 145kg, plus 35kg for the battery. At 180kg, this is a 80% increase over the current units, plus a further 20kg for the ancillaries such as the intercooler and other radiators

‘‘The Power Unit is therefore much more integrated and central to design, for example the turbo overlaps the gearbox so it intrudes into the space where there was a clutch or a suspension part. The energy store is also much larger, which has an impact on chassis length, fuel volume and radiator position, amongst other items.

‘‘Since the first days of the turbo units in the 1970s, Renault’s philosophy has always been to facilitate chassis integration, so at a very early stage we had regular video chats, conference calls and site visits to our teams, particularly Red Bull Racing, our development partners, to decide the direction and key milestones so designs on chassis and engine could be synchronised.

‘‘A lot of topics ended up with question marks so Red Bull and Renault had to jointly decide the best course of action together. This is where the transparency with which we worked paid dividends. This is actually the benefit of being an engine supplier rather than a team owner: we can have access to a range of solutions and find a common path for each.

‘‘We also worked closely with our other teams, which is a risk but also an opportunity – everyone gets the benefit of the input as the greater the overall improvement to the Power Unit, the greater performance gains. If we differentiate between specs we have to design, validate and sign off multiple specifications of engines rather than consolidating the best ideas.

‘‘We recognise that the teams are fighting each other so we need to support their specific requirements. Our role is to arbitrate and that each team gets the best possible service from Renault Sport F1. Since our start in the sport, our overall objective has been to make sure that a Renault powered car is the fastest car. This aim has always been part of our DNA, and will give an even greater return on investment in 2014.’’

What can be changed between teams?
The external parameters of the Power Unit can be changed and the choice will remain with the team. The exhausts and installation can be changed, so the hoses, hydraulics, air intakes and so on can be adapted to allow optimal integration.

‘‘There are two sources of energy to propel the car; fuel in the tank and electrical energy in the energy store, or battery. The use of the two types of energy needs an intelligent management, since the permissible fuel consumption in the race is limited to 100kg and the battery needs recharging to avoid it going flat,’’ technical director for new generation Power Units, Naoki Tokunaga, explains.

‘‘For 2014, the fuel flow is limited to 100 kg/hr, and the fuel quantity for the race to 100kg. So if the car uses fuel at the maximum permitted rate of 100 kg/hr, it can do so for only 1 hour. The car performance is intended to be similar to 2013, so in fact the races will last more like 1hr 30min. Of course the circuit and car characteristics will not allow the cars to run at maximum power all around the lap. On all circuits, it is predicted that the natural fuel consumption for the race distance will be close to the allowed 100kg, in some case just under, in some cases just over. If just over, then it will be necessary to decide how to use the available fuel.

‘‘The F1 cars for 2014 may be categorised as a hybrid electric vehicle (HEV), which combines a conventional internal combustion engine with an electric propulsion system, rather than a full electric vehicle (EV). Like road-going HEVs, the battery in the F1 cars is relatively small sized. The relevant technical regulations mean that if the battery discharged the maximum permitted energy around the lap, the battery would go flat just after a couple of laps. In order to maintain “state of charge” (SOC) of the battery, electrical energy management will be just as important as fuel management.

‘‘The energy management system ostensibly decides when and how much fuel to take out of the tank and when and how much energy to take out or put back in to the battery.

‘‘The overall objective is to minimise the time going round a lap of the circuit for a given energy budget. This might sound nothing like road-relevant, but essentially, this is the same problem as the road cars: minimising fuel consumption for a given travel in a given time – the input and output are just the other way around.

‘‘The question then becomes where to deploy the energy in the lap. This season, KERS is used only a few places in a lap. But from 2014 all of the energy, from fuel and battery, is so precious that we will have to identify where deployment of the energy will be beneficial over the whole lap and saving will be least harmful for lap time – we call it “power scheduling”. This will be decided jointly between the chassis teams’ vehicle dynamics departments and Renault Sport F1 in Viry-Châtillon.

‘‘Choosing the best split between the fuel-injected engine and electric motor to get the power out of the Power Unit will come down to where operation of these components is most efficient. But again, SOC management presents a constraint to the usage of the electric propulsion. And the optimum solution will vary vastly from circuit to circuit, dependent on factors including percentage of wide open throttle, cornering speeds and aerodynamic configuration of the car.

‘‘There are quite a few components which will be directly or indirectly controlled by the energy management system; namely the internal combustion engine, the turbo, the ERS-K, ERS-H, battery and then the braking system. Each has their own requirement at any given time, for example the operating temperature limit. There can also be many different energy paths between those components. As a result, the control algorithm can be quite complex to develop and manage.

‘‘What is clear, however, is that at any given time, as much energy as possible, which would otherwise be wasted, will be recovered and put back into the car system. It would not be an over-estimation to state that the F1 cars of next year are probably the most fuel and energy efficient machines on the road.’’

%d bloggers like this: